maximum flow problem example pdf
23303
post-template-default,single,single-post,postid-23303,single-format-standard,ajax_leftright,page_not_loaded,,select-theme-ver-2.4.1,wpb-js-composer js-comp-ver-4.7.4,vc_responsive
 

maximum flow problem example pdf

maximum flow problem example pdf

Q7/8!\4uZ^r!TZ?G(abQI!aFtjQLjbBsVGR%pmY'EHX7$&!6]94`VlrBVp,p`e9p! @,:65kRi .>01'&6&g2l_$P.Xu;Q?B;'8s;[PF)g64m/DkM)nAAP,?KN(QlN9^]Xh8C/eQ?EF< /Contents 44 0 R /F6 7 0 R Theorem. /H:>Dr5Tdt&+W2.`,>&IEb[.KL9N*ZTNuJ"nV;@2UBoTZJHHH7jp6;,m^A(PHNGQW endobj 1Nb2='`CrF3&@Bd0i^6?O"f%H.$M_*;k6$)%ld&Q05mmQdn;(;:Dn2,!>5>hF*Ab, h4nLG1(F&2-"qr65f,Jj%a=mH><6@eh8?C'_D0C>*fF,Ni)$2`!D!I~> << EL/n4%^gMITlUsSU$Y-ZE:Ie2L79pkGt^-8P#6NY;'@W<0K7#^n)TUoSj72\A-B#W endobj **\=jM3$K+V\Z;LV',adNRu". %E!X63Tib!H(PNVXot!73\qudZBe]e'F_Kp"1aHnG1NjuE`/?t/aJ;V&2'VPBH)^D 1k[VOA>It>]I3(NAE"6]/p[_Ll7>Q5q9Ho+YZ&Po>L0/M8hQ[TA#M9@=jW/H/cBM] (#I83fF,#REb,83/"daX/o7KNp[ubX03& 65 0 obj /F2 9 0 R RpJ9\lC3jc)!46[8;Um_6Ip9;7oZ[*2'4qY80Um7V)7=oQ+Lh39/f'.$dYn#D]j(l !_:(RhdPdWO[UEDfX:JC9A1e^gR_T]&p9PFi.dD/R6 )Ap>"N$/KZ;fpm]dWtJD@2BQZF1A[ _VF0//)2"PYUe]::tGS0:t0DCE._%%,pn4AX'479;bl=F3'Q^]8/UWK?9OhE%DZJR /Resources << 7009 /F4 8 0 R X5ArWfummb]H?8o%fKa_Op/i9+aK7=lO$s0/+&Im9t_t8oqS! W/1pK&O_hI;*)[JFH"uYaq@]L-\t.j*(OG9BV^Co,-E^mcL\XGL/#a,Vl8gs,2WP9 !h@D3AFiU][c_""YmT\?u=28]\$.Ke4pp&"t^/a8l]$>e4`tFEDP,'n" @5cO'3Y1NU/I;?\i6AU=*0ADG&^Vf0q&P\935RLBo5d:K+EI*;)\\o4EVVZ#Y6jH< ?^^$&tZjuBMJ&PnW@WdVBiC(;H.D*pI_D< 67 0 obj cZUDE_W'e;"5\F/Z11Ko#maMW0n`rRlT\Is1nT)6OqTTT]*D$sj_VV\1(kit(SL;' /Contents 47 0 R ]EJkR@`0ugh$#!%$:;V&O$#"MluAeHVXOfhMU6C=HD/F"6&/KZ.l.C02#)eZ.7ucm okDYC[$rDDIO6Yedg7U"jMf'W1eRmeHkgC7:1(VmADB$-B:3rqL:b!s,0^Ih7PfK. 64 0 obj r_Ws\c5Ns,B9]De;jU?8>"bo@m9,AZH9j@5l)e^>-*9iUkRFOk(G7?ZFA-=M;&WAK endobj endobj eUPr_:eD62:L+[jr>JN2+%tX$d\UhTAWogj-jjA*i?5uHh5E>!j9,JKdt$Wb!8\.? >> Q'LQ`-X\X4M*R$PqGL@3((cW@&u]>o0Fa^F7(d@>*2%tQOO1PM,fN\03CcUM&AD-r 1Nb2='`CrF3&@Bd0i^6?O"f%H.$M_*;k6$)%ld&Q05mmQdn;(;:Dn2,!>5>hF*Ab, Rf_Ve"0f-(Y+&QZ@\'D'7^?Rt6oV*ND/HBo.Yg1&aZ3I!D1nBG`:DF52 En87qD(9SSWq+T?XAHFJaX]#7).cA-X%$Dc8?Zr\YOG48O\"dG>dA4rN3['(Mh!_1 :I\>IK]aT/,fP\? /F2 9 0 R "h_hhdqVaVO>h29&Vl! J/gjB!Q?aPJt9JXSD0L9=)6dPT=4_DVjS!5pY0bB&aZ$mS=,1l]C7Ut,_NE,LZI Ptc[be[X%n^>l.9)YE)N)R.B9.m;or>q(*2"]WR^-UriuL+ofcf+lZ)URJm3QErDb The maximum flow problem seeks the maximum possible flow in a capacitated network from a specified source node s to a specified sink node t without exceeding the capacity of any arc. ;L''\6t iq^)8jJs@bEXQ\%L&n"]JjClud&. /F2 9 0 R X5ArWfummb]H?8o%fKa_Op/i9+aK7=lO$s0/+&Im9t_t8oqS! endobj '"eoQF)+PM< /Resources << endstream 31 0 obj osQ5hZ8=eD]/@!c26/er[+)@d>Rc2S'=C4EDU-hOl@Xk54)^]gk"Hc'&]N^>VJoDq\] 1219 55 0 obj ]a8?=#]ML,bIUmAIY?&ZRuehqW>rSVCibS_!p1\_W#CU'3L7p1LOc[do+>h8'1oX7#JQ&_/J+$oU[[jd&.oHBEe)H["VFKe `I+UQh%.k7U!0K5d.F*_]P`%CZ-hAldMEhIrAgsMF-GTq6"OXNK<4j+n=)jKB;";o endobj c>9QX-&']'UBU:Z(SG%SHsYVS*,[?CPR(c[7+oDQ. << :?i+G(1jNiO];<8+Q3qY:JrZHRl1;.o+VD:E%IdALYj*/qario'"1AHReBM.l*5; 64 0 obj endobj 35 0 obj J/gjB!q-JW7YY$C@9F)`+9KS;u_FOcVgPN.X+43P(2K&sEesbHCP#8BNh+L+? MP(G#$;d@+5--4n%oXk/$+6TTU=^-_%=h<2Ud0Hh/je>u.6/]]9mLW]aC81e9iI,H endobj NGBEq;Yr9+:3SQ"M5*oK7QJ&)[AH:tC#3mfPYYV0_5d "[\U@(kuGo%e-C5W_C%'.f)<8 endobj /ProcSet 2 0 R >SZtpFqBDr,t(JI. H5FVLRrb*JaP;Elf;XPOnZ$VV_e8W@:QrqVbl1[N2:jk6]\CC4%Q>2DDHFX5mGS`3N /Length 67 0 R :q << /F7 17 0 R c+#dp>EJU-%CArNR7s?%mr<8ob1"Yf#GFei.,CXnDhiVhDW#KCT>]AV"*u0Pkh#teAk3M2TOQ6ZZF/=Q7$G+lN:Vrb N8b`"\P!s/`ApE:aR3bR]o3(1%OlEk(H+.dn(@gZ'+%FhFl7=D]u,B-g_+0=W;DI !WX>[N *Mt.uD%UmQ595m/k$QoGFXI;'a*o ihkGjmVNSI<9jZE(m,m\A5s4:D&i$[+@b*(dCA@+p?IE$lH,-U;+g&//rK1:kpERt /Contents 18 0 R /F2 9 0 R Y;Vi2-? stream endobj :q %5?!b1Z]C[0euZa+@. MD.&FVFU1di!RmTjf((uVugYb=?3?Md=i1P)PS`tpl:W(TWouh%=tg%Dsnm_a! /Font << /Contents 57 0 R /F2 9 0 R AT`X! ?N!3RrIUR_$#:5("[NCdi^h=3kKP.Qc2RqK 9ii5smp"N?O"dpq'N'dEEmhf93:/@p6(FE,aKdoq7S.[>S? HJ]1Cj#:0)Wd:;?o&T+p7B. 1. (li!kn`i!j:qZp\l'TRa-8;6g(87"ZDVtA>.L#*$Pldlk(S5S5-46#H9\<=e 9\22O$L83s;$)otKWN@IEh4l+K&dIqOu88p4#`N#X'WUL5)!f'Y8,>ffb*@ Q(stIR%?c! %EGj4K.p;C>Ls(!EpEan@%IRRQ:r2S\"KU_XO/6F\1Tk)'eZ7!f+i=2h)fAZ"t;Fa :/F KTf_mBLt+')O*VYHZ\/8rL96S!PPF++B endstream endstream S"A/?%9?6_.Qc1&[:i;":PtEJ.psj56q,5=M >> stream >> /Length 36 0 R ?&Nn5[EsO`X]\"3>d[pDX*[QG[J^ifj'QZ_RF/o# 10 0 / 4 10 / 10 s 5 / 5 10 / 10 8 / 10 8 / 9 8 / 8 13 / 15 10 / 10 0 / 15 9ii5smp"N?O"dpq'N'dEEmhf93:/@p6(FE,aKdoq7S.[>S? [+Tm3bpK#e << endobj cZUDE_W'e;"5\F/Z11Ko#maMW0n`rRlT\Is1nT)6OqTTT]*D$sj_VV\1(kit(SL;' #\B9A EJWl! 6QtOnCu9I[j,g`%Y".T8=lc/\+U! dB/\,;*2%JD8.Yo!PN,!Z;)[bjB#8IlKLOlD8Sr"6-UoobS8Qr@C1Zp(_B25l_bh( m;D4OMpo,\7Dt#`E:oHSeiH#V[,"]?p""E:f*b8?f_K@Uh:IlHDGk;h&m1srSFZ"c[s1&@iX:Zudu3q` AR)LS/U'"!D;otk`qC@ql0FsQc]HngaR&edh<3l[)IjI7feH;830=10UC8mCA8`[WZg.Q#HW3D*Sk=d)^WK;8@RSR[St,5Dib Max-Flow-Min-Cut Theorem heorem 2 (Max-Flow-Min-Cut Theorem) max f val (f); f is a °ow g = min f cap (S); S is an (s;t)-cut g roof: †• is the content of Lemma 2, part (a). ?^^$&tZjuBMJ&PnW@WdVBiC(;H.D*pI_D< &I=_WV'sH28VOh3,#)8o6q#*B>:rV]eJ8@"i^Hkp?8\IQXu0Ilj^&'+ "!G`G6c!HH+9o`FjuNVIR*%+C6Q"/]%Ik]+1(kr&VhDl$R!1Xa]U7dbl+\4H*&0Zl) 'NQ9s>F*$hSJ%E,_Q.us\U?V5Rk9lflFI_*/BSY-HfAm4 oW)Cj_6(PL.e>i=#(2M(?,)1hih#TET2>A76iZrSaT>3#(#0&<288$(7WZhRcR /F6 7 0 R 3Xo$K_?$`ArTUKfO%8Ko95,_3J='flc\1 endobj ))M;@E$d"NWs/[N3Qu\`UKQu?LeShhH#dHA>^&Fh*5LV1XqH.c9)c\+UdNio8L,m /Type /Page .p-c3]?ejJ2i^`;9G^83KI%LqY`Qlp4H>=l'KkEs5W=YH"@s4tO>'AT%\mF`(Q>,N 4X`bG;$Hn3P!9W,B*! Given the … 32 0 obj 44 0 obj "EOV_sdZN5kMF>pgYfdak>lbuOV,J]h].2]+/N << X%&97%$rV&jK$B?%\MiD\WCS"8hN+#-K[]2PB)XqV"%M9jd7cZadG-*#1E70fb/1e "h_hhdqVaVO>h29&Vl! K"KA0Dhc\H6p,t`S8I`ocgV]e6O6itphp]B[HVr95[a`:9!PPF"".W$n!aA)@01'Z _D.0#o$5F11RF9/A\1>`7E+tP[hPPYN-H^]+V98pd;n:IRZ\r)@`"^gZ7l"M!-S=( 4'&"J.U0M-anoM]9U!3?A%`Rh^(QaQAR_OY_8.fI_0-njauR:q7DRD>/fX$>,2j4M a7#E8in,]^JjAK^*66YNBSbTC_], H!q,Lm]Zh2E%Sb4,\odL(:bGOtX,! J/gjB!QX2Ps1oLb%7m`h"H@hU_mga#@j.5;lc)8`_ifK`n*_P'e`]g8\6dt+e;An]'S\q /F6 7 0 R )&nqoBl.RTiLdT)dmgTUG-u6`Hn"p44,PNtqnsPJ5hZH*0:@"?K56sYq$A9\=q4f:PP;-. [d0#mP9?#,Y:,4S.UG,q%Znd=/8gj,42G[a'd$=,8kh7HF,Sa,6quFciAcArj;LO>7&MNUmu4Ri=Z)Sr K7ukN+)OL+YZ=Odbb;>2P1I[[+g7$5g?cl0)70(@YEB'="^GJ&Qa4JfU9+*e],dfM An st-flow (flow) is an assignment of values to the edges such that: ・Capacity constraint: 0 ≤ edge's flow ≤ edge's capacity. >> /Length 48 0 R '$&OM(p9T(\/iA45_!cpK!ZU-T,7kXC-*R\V=#ag&oG::@> )qUN+UmUP*]Oes"^f@+ >> )HBi//2$8,!jfmEW1E*%lgDsIXKM8[We7Juc3(3mB.%re;pQ`k2qGNOb%)N-%-dJj $>==2o2Cu8b&gOSiAbH#giU^6$48IX"V;4~> >+*l6Lk^pK`,oTi)RMtjV)gQU>8U0>[BrOGZ"Aok7:2gW>0^s'1d1XHD '#X8;=Iirqg-VM(ER5>[U'7aWZ /F6 7 0 R Network. h0lqqKH>!+#)%[=#!L+=_^""@)rF'SbWX6IU96sRN]Ut8i1d..*Wf44$*.i^B`tqUAJQX9N)lcag6CPKM*t5Ssf1Ij;q)7]"O+u)cBVV/O$? 29 0 obj `Zo-74C$Ln4*m5f_jXP*=)rA07;i#pL:g6SHq23(GKDj,FZa#aV+#VHT?>r/b#aBF %1g8I/TQh$OSNghXp;+^!dLOpC8?`EkJ@f'cVcnXn;T+UpIC[3+uUp3gh@6n/RrDd gc/.U'?\X]oEF!0KG3_P#S""Wd Source: On the history of the transportation and maximum flow problems. << TJImkCg*JSg/@i`r^mj1H0A&5su2R10FT^%64O-WBkh1(IuaokeP]KtWc> CH%*[CH>1.>h5"8!`CRJ2*dD,;PP4GE(IU\oI^f\);Q 0n1cb,;#p7hrVZe`"nOlJu,Y('`t!WnHAti-=G'.,P(EH:*Cj%9*<>!0W%='NYqH\ X%&97%$rV&jK$B?%\MiD\WCS"8hN+#-K[]2PB)XqV"%M9jd7cZadG-*#1E70fb/1e cD>X-_j/`GJd3Dp%D^*rK2='@:^u@D%=M7+i:#-fcoT'Ic=k-O/IjOd_BM81%=m(6 << CK>K6-l'19;2bNUL6YcK";Q5hog`92/LQ88=9ZNC;bJ+YJQ;B1\Fm%.FluoXhc^+& `ZBFP<5I^c68ue/"WiNZ+Q(`+RH`S%lc' ;/$)*. >> $MKEg#hq(oUOq4dN9Y!o/;5RX`:'XiU>'/-Yd.Bue,LMpJLleGG endstream ?K3Y7"TVriV(SqS]]KRC::0%Tb-I#VoI/![i3_HT]`I+kmf9UD><@Ka_e9ignU`Sc]aRM(iUC9iHi^! H5FVLRrb*JaP;Elf;XPOnZ$VV_e8W@:QrqVbl1[N2:jk6]\CC4%Q>2DDHFX5mGS`3N /F2 9 0 R 5#N;AkNU^fg]1r"6i[t.6mf&eUomY3E /Parent 50 0 R stream eUPr_:eD62:L+[jr>JN2+%tX$d\UhTAWogj-jjA*i?5uHh5E>!j9,JKdt$Wb!8\.? /F2 9 0 R Nh]&g6`N"2=PKe41+c0TK9?^0h@?4(%0M\P66lu4kVWH["T[Bh5h6+VX>PS8f]^/(T7*dXB%C^s:Loj42C.%NVDU%:W5dmaJjU << X#bs7e"p /Length 15 0 R >> >> 1313 /Type /Page "KT\!F2Q;Z2_MV)G:\X!4mi&;RNuaHimQ-T%RZV/;K^:bHZAgGInZn3jY4p8R+SS,mGJh7pJR@cKS) ;iLcleK_>>\*Bob 'V)WGd4`s.;cJM8'Vdr;*Z]1Y2i.*aWD$Mi3a:?@mF,N)lc+T3$$;Y+a(Q&P!N='67PhsGPc0o&^#I-PjN<>>rk. >Qq(XJ/;l/QW,KN'FHfX!C?h~> ]'.5N]#Ou:K$gY;OL#?Ghm\Oq:= :WQm>":ESZk0knke#:jLTPID))9?r.eQ!+0]U;h9AQ$0r;b_I7NR,b4M9)XFfa/?= ".SmJNm/5.kDUWn5lV?Mf\SDXK,)Nh$mQVQ&.E&ng,KS;Ur"t"=@9JB[#bFE^dn'8 ("O(_a0#(_SJ OXFB/^O,XO_Vr9;#Ja"K&eA*e\`%V:6cOQjHm(lCia\@`> /Type /Page N+/nCqo^t2`_&=sYg[R"qJX%akR9OmPZCS0)6&sio%_Q Q9*Vu%X#3I?rcS]Vu]9Y>16M&?r9O!=B4g$2T8fWMI8?e<42U86K)cR(NPhqGA7L[(?0FI;fL<>A[WIkPXM1R 4/TG"-#u]Ec++->VJR-TL.r^,dO#IF]WY:'JllSp%U$e. G4],3&Y0(B(pdkZg8=1[#&3GE\%.BLk!DsRP4<9&Ve7Q3YmGi"Wej'R/Gu!5hC-li /F4 8 0 R $C!e/!,As8P*>bBX"Y2'32%LbHl!#9fPDHND? >> /Filter [ /ASCII85Decode /LZWDecode ] J/gjB!q-J`1eA,:N&7-U-6l/q-YY^] /Contents 27 0 R hg"[1cpYCC"!ZpM0:sT>8u/u[/a5(Tk@$Ib7j9["tBOoCV`^t+$V1OU1Ch>-c!s3?ukY7,goGkZ7.G'JAU;$0?A0, ___L(3_SK`b8:?r*5j`FUN"40754M[2:6EO)_6UE1bpeFj(sZ5"9KF;U:aD1gbMIk ?Pq0GV&VC-^sGMI1=bab' >> !.D&1$sU'nK'a]QV.k1p'uJ!I\Uu:q10'BNd`)]*W7X.62I70&!CDfU"X"o~> 3IkSFUE&@h;516o)p-&EU6l5s7d/fd^n?4:-X9FeEd!A63YlAlF? /F2 9 0 R 23 0 obj :Bb%/:gdi"k.k+J(;.7[r#Z)B$iCQXH(9T+N< endstream Maximum Flow Introduction Given a directed network defined by nodes, arcs, and flow capacities, this procedure finds the maximum flow that can occur between a source node and a sink node. :l8bQb>#jUu$!r)COML`kA%[$/fp#ZL(cC NN))A-<6,/nVoOO;q/BkKT7Ll'3">ROr2r=Q+ZPTq2DjOQ$GnT\P,&EgQacLP^))L 2QIY=@au3A2ALX\1P,duK,/>q\1;.C0&a4MHZf:? /Length 28 0 R **\=jM3$K+V\Z;LV',adNRu". ZYjtQFZ/u4%(%b_s)RXFDtbVu='#FS+`p'0GAo!Pf,](E'lp(SG5!3P[ek+n0lph, mXD(IPV+go%:J6rA4fQUXVd["aLN/6Ud9oRat,nNHOSlg2(F9u^+W#O a1cE[:bF35]0_K6YUXUT^#>o#*2QK50$T*&YdbC#!TVVo26P"7N!CkCjLg0K(rA6@ >> L'(B5##?Ft?mRju]d\8]cJe;_73. 532 A Labeling Algorithm for the Maximum-Flow Network Problem C.1 Here arc t −s has been introduced into the network with uts defined to be +∞,xts simply returns the v units from node t back to node s, so that there is no formal external supply of material. /F4 8 0 R i#UQeIG[a6bMLiNG-9n4J>N!Ou\ /F6 7 0 R S"A/?%9?6_.Qc1&[:i;":PtEJ.psj56q,5=M \U@/]c'-h!@u_W%&P7qE4\j(,NR[N,iua\gkEWTOMOhLX\cnOk&XF-/Q?ed"H5DsEJY9PskLq/IqCe4=R@i0(qCtCt'\Y*^?$6qF0D-g? /Font << 3Xo$K_?$`ArTUKfO%8Ko95,_3J='flc\1 X9E$obg!E1[s?d KSa[6]hEV`-R)3$2]FU)d;W(s4!O]A[aB#Zb,4D]\J5EjQLe#+$Zj>1@*6.#fA;Fc(P'@0S&Gtj%lYqL)M/=]"!J8Jf *W\__F3L_/VAF4 31 0 obj /Font << #,DMCU2qo_]uDUh[.W=?.=R:V)8CCo! '&X@8P,sq.MW>5PW4>^H?_b]$m:R*g+C==ir3]s4IN16b0YM^ >> >> TXcZJ"KraRI%8,kVb[pa17iWO7kKf+<2k4C.s+Rt#J?k-gR,V.c,mHBC%JJ(W4uDf endobj CH%*[CH>1.>h5"8!`CRJ2*dD,;PP4GE(IU\oI^f\);Q 4/TG"-#u]Ec++->VJR-TL.r^,dO#IF]WY:'JllSp%U$e. Networks consist of special points called nodes and links connecting pairs of nodes *W_WT7(h;(:Mm.dOtd#`%+l7B.ZiW>Pa64qSp3(S5_9_).#(_&O\B>K#k=Cm&B5c= 1376 *W_WT7(h;(:Mm.dOtd#`%+l7B.ZiW>Pa64qSp3(S5_9_).#(_&O\B>K#k=Cm&B5c= /Parent 50 0 R 2[tD^`\T,;i*)'D_8p7NT59-*C%iBN9`@c.rPL%#h-lP"Ut:\dOi@0 /Resources << J/gjB!q-Jb.D`V_ [u_#-b5"nK(^=ScZ=]DS*]U(=\Ft*MjcS&`]8$rfq?tXQ7t=5P"/*0R>Ni3 :MZ+P /Resources << Jt6cKO@jue3lI]>n6NJ'mNTm5=n'B!6RJndl&HZcR8U9+h/`Yd8Y#*Ht9&?$7q$NPhOiNmqCm?6p;I!Pa MP(G#$;d@+5--4n%oXk/$+6TTU=^-_%=h<2Ud0Hh/je>u.6/]]9mLW]aC81e9iI,H /Filter [ /ASCII85Decode /LZWDecode ] /F7 17 0 R /Filter [ /ASCII85Decode /LZWDecode ] /Type /Page Lecture 20 Max-Flow Problem: Single-Source Single-Sink We are given a directed capacitated network (V,E,C) connecting a source (origin) node with a sink (destination) node. AI`.a2hskq(gG@+%?9:$V_H&O_NYU+8;TcfKU`uj^iKr.KhN6>'GP&%$6UG~> NN))A-<6,/nVoOO;q/BkKT7Ll'3">ROr2r=Q+ZPTq2DjOQ$GnT\P,&EgQacLP^))L J/gjB!0[kg`-GqjVjCpXn1KpnklYj#"Jqd*l?YhtfK2O/1gmFb- /F11 34 0 R 9 0 obj << 44 0 obj /F7 17 0 R A/:tBDSf[l]KC>r3a endstream *P.1$hD3V_C[XK+E1!U#t0YANXj3`7/:9+a;1X '_+ildGI (Tr$bXP2E%X_4lfYE stream JeOcZH10rP+HAjQ^C!qI%m1cBnoN];;Z$"a)HL2k$@aQ)G/L#9G423/0M=GP:uU$= J/gjB!q-JMH6Ig3b&TM3c,'MgYg:3DSIHHr7]LS;T1h^XgeWri $]`p4'uNr1\(#$P]_.QS\PeBF:VAl$0(*&p(cO0#AHd?uJW/+1>=@a7;h9'DTXj=i 16+`.1=?RUT[Rl&Ei\.ob;9YP)n,jB=].UF%*Y*`&JRf01-l)fd=iAZkVBM>+Rt"K /Length 39 0 R /F2 9 0 R '%3W_Z::0(#i#"YcGr ]nf4>N!YgG`B_\ZmGP?a"F4-jAfknck@NF:c'0/0MCPT^#b5AW%4 X�H(�� B�q\08�����������ޛp��cڹ����·J�j26�}���Pm�)%�{h_�L���\��\�0�ڧ����ZT��T�b��&g�Ğޘ��RعĴC�)���B> stream /Filter [ /ASCII85Decode /LZWDecode ] 61 0 obj En87qD(9SSWq+T?XAHFJaX]#7).cA-X%$Dc8?Zr\YOG48O\"dG>dA4rN3['(Mh!_1 /Type /Page >> >> >> Fe_'^i^p&,Gc47R0Yd9:-tPMHS+TC*h$:8.=Y3CYm`?,%4+-lLb! stream KTf_mBLt+')O*VYHZ\/8rL96S!PPF++B @5cO'3Y1NU/I;?\i6AU=*0ADG&^Vf0q&P\935RLBo5d:K+EI*;)\\o4EVVZ#Y6jH< [1\6[]4XD+NNL&T5oS[n1^1CYJ[h/;l\[)>g@`,Gha;`ki+3llVEDlOMDf9kHKD1T ;"r*.2k)UXL8o$28M'4Ro\)gS!I;-[P:d* (Y`'eIY>e)p3qBtqYH+tG]))`9R^G1E@:>V',Z*FbE9n/Eb @r>`;HaS`&>lrJeS;@l].o0%'WW_ik:5]3;4-Z-C7Mk6aG"gV%lmK(!gh- `@6&c0Y*>krYC53KJ:8#oYd@MY=t`odY/9\@i1HsM',l$uE03F>Z`aNA=&.Pc_X*P6C. mb+E=C_H_#Q3RU2at>Yh]\DBc9j=#u/`kb*@njnh#+:MYY+3ajZUT@JH*7Tff,E]> /Filter [ /ASCII85Decode /LZWDecode ] Fe_'^i^p&,Gc47R0Yd9:-tPMHS+TC*h$:8.=Y3CYm`?,%4+-lLb! ;,$2J? UT$PX\@T!'W.doeFY9lH3iKC9_Y1%scDE/c7U'Va/kQN!K-XJ?;dNaNdO-^D]Negdc7M? UZfd4[EF-. Ng*4P2E`4!#h'37.,bPN0YY3K9cJ=S,u*V]Js6Hk^h3[33I<2R3,JXXpUOW_ 5#N;AkNU^fg]1r"6i[t.6mf&eUomY3E J/gjB!OAGPs1oLaq9U[j!P8\+?CDLU("J]+r*"I*=3hT#hQ=Ns%+ J/gjB!QX2Ps1oLacqa^1J*\n@5\At``&b)@PAK8c:5K:X&qiEc__p=Ft:*mf+!JpI#VCA ;X&7Et5BUd]j0juu`orU&%rI:h//Jf=V[7u_ Source node s, sink node t. Min cut problem. d.Ah1#qVNRY@(XT%?&P.5Q endobj XG%=iXMPK`'PuL$;)[+q%,d75/g?>la1a:sU3I/MS*rglKV&rfP! >> 4*:1eFL3T08-=!96R:bb! X9E$obg!E1[s?d ?3W:`-aF\a]>US.DtsaH9.sm=.P]qjM,=V`D_4HgLGQ"BQZ@q X0-*;>.%@1ZY25@Wd)3]fpJ5HpU"-/WlBXBe:^UUe S"A/?%9?6_.Qc1&[:i;":PtEJ.psj56q,5=M (Y`'eIY>e)p3qBtqYH+tG]))`9R^G1E@:>V',Z*FbE9n/Eb Nl/3*P/=g_H`e+C,hh+c$,T! /F11 34 0 R /ProcSet 2 0 R ,m^1!,.,"Q?,8/MKOBdn6Dt5.f(W-u!/rg[c+OB1"tJQOHgejgM>1aBiT91jPn"9j Q'LQ`-X\X4M*R$PqGL@3((cW@&u]>o0Fa^F7(d@>*2%tQOO1PM,fN\03CcUM&AD-r /F6 7 0 R >> TJRM97)q`\+[G[/q=J:iUrHrk,m_G0N:_->:U^UHQqHbqGJ[KQn';&7#5,.Wr@HnI ;4+8$cp5rQC+p,KaQiC/Bd/]Y]J3\9&H!q,Lm]Zh2E%Sb4,\odL(:bGOtX,! K7ukN+)OL+YZ=Odbb;>2P1I[[+g7$5g?cl0)70(@YEB'="^GJ&Qa4JfU9+*e],dfM Minimum cost ow problem Minimum Cost Flow Problem ��s^$=��V�+N�] � B2Wa'JC3)g:0W`\rrb=7N=MkJ)%(`^h*XOLGu:Ypfc*C`%XleI0A.Y2=Q83Km>_8f P8I(HfHk$0)hBA-ZL3!71^@a%"*Lc+@TG`,\+4,FbOF1Cap\QrNuf9SE;Kq`m@f*RPjUQi:nbO6Nt )ql`/Pao$_b$4EI;4&-N&V=>7_AKOl&kdDU/K neEO+\D.Uk$S+dDWWr>,,'lTm9.b=91q5. stream /F4 8 0 R 1376 S/5BU2"jJ>a!X;Y'/j_5'/:hX>/qlT2/6sJV*P^i%%J#62L7."[. :GGTPgMFR6kLfN?0]5mZQl'p*Hjk0tKDA+G()rc4-Gh%D_0:+P[C`5ZK), J/gjB!Q?aPJt9JXSD0L9=)6dPT=4_DVjS!5pY0bB&aZ$mS=,1l]C7Ut,_NE,LZI /F6 7 0 R ?3W:`-aF\a]>US.DtsaH9.sm=.P]qjM,=V`D_4HgLGQ"BQZ@q Both give equivalent results within experimental uncertainty. )Cn``Qbu3hG)c:@o>&lgi)/K71rdJ(h_f= Uu"@M6S9qsKjL;]gnrGd#k64Ej:m!7BO6Be%#=WhC"j$bkm5Xu$Re@M@ZoS5B'>%I endobj !_:(RhdPdWO[UEDfX:JC9A1e^gR_T]&p9PFi.dD/R6 36 0 obj We are given a directed graph G, a start node s, and a sink node t. Each edge e in G has an associated non-negative capacity c(e), where for all non-edges it is implicitly assumed that the capacity is 0. c>9QX-&']'UBU:Z(SG%SHsYVS*,[?CPR(c[7+oDQ. $jMA!FT'JgX>Xh2? /F6 7 0 R .U]6I8j_5gVFpP1`^YZJ;'eHk@UecEOt,D";>nW3hNUti"Cq\0m@"npjJ? stream /F4 8 0 R _MLhM5U_jdVc8@%XG90ME^/oh/.SaoN3Q%Y9$:eq@gW&g6E\O,1+dJAbleBu9_Kt& >> "h)+j?F,JuHTipOSiQ^lIPkQ3c )VqG-=/NRjY1i->Z`L]`TfY:]Y(h![l5Qb(V6?qu. >> )mZkm(J1I2 >> .kY6394:q[5[e0HGAI?,at[bX;j%eQN58K$/ka[Y1G;FQWh(.f )nRSOne;3-'""f*E/7mJ@3fSbBi2rmgHg$iOb"u](aY>n8/14;a .kY6394:q[5[e0HGAI?,at[bX;j%eQN58K$/ka[Y1G;FQWh(.f endobj (li!kn`i!j:qZp\l'TRa-8;6g(87"ZDVtA>.L#*$Pldlk(S5S5-46#H9\<=e EL/n4%^gMITlUsSU$Y-ZE:Ie2L79pkGt^-8P#6NY;'@W<0K7#^n)TUoSj72\A-B#W << /Font << /F38 11 0 R /F39 13 0 R >> ]fLiKi(tm`;p^I?Us]T((ku^-1"]3T_?Ppe&X_gS/F(G'5LB2@- HJH"_5m$:s2V@]m[_'/+jh>[q`YFL%COYRbDqW_uVsp5'bS=HPSaWKB8s!X%0k&'d /F2 9 0 R +,+[>$G85+ruRBXHCu\b'P>A5Sm%Fom$[$u`r-[;@oGNDq%u.Kr;e+N5@AH=J4pmt-I13Y.o.FFuJ8tXp3>:m)A-+`;flm!cAPc8\%Ur)jUTjp0@ 47 0 obj VX1f6R)b5!D%"CC@jW.//Wah@@`XO`SgnOcOgC'Q2C*"T(]9hgo$/FO\B;`FX1H_'@`3#@IAnu5^XO'h << endobj :q /Filter [ /ASCII85Decode /LZWDecode ] o#2GdngC`J$0,]D&a^&@]cf)L_p\]6nA-[&^h8i!-M&H6ZPb'Pfe,%l/[@oYP:J'M "KT\!F2Q;Z2_MV)G:\X!4mi&;RNuaHimQ-T%RZV/;K^:bHZAgGInZn3jY4p8R+SS,mGJh7pJR@cKS) aun\epB[LXVSlG6B./FFGb(ts$77C"A5qB:8kK?c$,prCE4C=XSD`CR$\J;I%Q'5c YC-$rP1*40UlfCD@qP"d:7i#nqFrO7$C;J8I-&3VpdSroYhWe"p+9bUp5setbdSAV %\Vkk@*1kH155ka6Pg$9"Un.QVE:I&]0fs[U/4bO]9eI^]Kg's! :MZ+P << aI@_E>JOm^+hiZcq?qE-g-Y$uSt*EX6C\XhmWC[pdFHj=.5]8BZuSZW"Z_mo >> [Z'"J-Y#g:oV\"*C:#jEuFY^K6'DPA+>,T )Sg=a5k.&mUbMP=cbros6a2dHqn96/@hPOJA6fka ne93?X$DR,WF5+q.dc_L!!`.ZV35jtZXN30k&/;7En@t&XU? An example of this is the flow of oil through a pipeline with several junctions. /Filter [ /ASCII85Decode /LZWDecode ] (%NB@ELdB)H4:]?QL*Z:>nXT&f^+2M7eGsDLG8=5 >> endobj ZMGu(/Zt95DT8dc3u&?rpWn+'OeVs=3uh%P2FAIMn/!'_!1=! Find a flow of maximum value. 7]s8e2DAui:k?Ug/nb*++bS['_Vc79.XenJh&Or/bq3%dhZgof)W2O\*C`9;nmS[j `Z&HeCu1e.#!-^UL4Eq`9knN /Contents 51 0 R stream 41 0 obj stream /Parent 14 0 R /F6 7 0 R /F2 9 0 R mXD(IPV+go%:J6rA4fQUXVd["aLN/6Ud9oRat,nNHOSlg2(F9u^+W#O ?N!3RrIUR_$#:5("[NCdi^h=3kKP.Qc2RqK /Contents 11 0 R !J* GC"F)QHb'!j1N>j"=(:Cba39^TaoO3E18FJPSKJo;u$1WK^j(_0]#GVcegdlDOj$t B2Wa'JC3)g:0W`\rrb=7N=MkJ)%(`^h*XOLGu:Ypfc*C`%XleI0A.Y2=Q83Km>_8f 2>68#gA$U@LCQj\8L34mZb::E2RQ1B>^WFn";6nl4B/VF*&Ph_0R=USTuo.E-bXO5 [14] showed that the standard !sOuJLJF$HQ@*k$Z%dp(kY_+N=hb[h_jJ!SNPt(Of]JTi4dD;"Zrnc!fLQ,SRj=@> !uas=AG@?D7HTkG^. l90cg]WS3+YRah'Mc21t?NNM+>e0&\ZG60'_p.a?FOGQaNUm)**Kj7nJU\Rl 0]s$AL3"bqJ&1*7%45#@l_1>VMafUu`]U34Z9iNe2\!YT7+)M($foO=K:_p^;UMCg/UN"6K6Vu8?%_89$6P78?A*Xh!ndG*h5Kh,E(b85< )qUN+UmUP*]Oes"^f@+ 61 0 obj W0IEbbp[]F-WK8u%^lD"6al.5Zq$ICMK([k?B.=I*.cHH@^>P[g!-fFDj%\([5HT` ]J0U%`Z!b*c[ZNE! Two major algorithms to solve these kind of problems are Ford-Fulkerson algorithm and Dinic's Algorithm. endstream 8KMY-4gpMcE+bRUS%T+Dm9\Sk=q^#EBc18Y48+pi`/X1-E:'oH4Ph#[j5r:\Z/)S0 /F4 8 0 R ,iHbXJPeWfKgOK_mZ7_:]Gj)gL&L@j#k,Ze]hXJ,_WDZSj >> << x��YKo7��WloP1�p�2�K[�@�E�$ÖUթ�Jj���ɥ���]ɯ�)C�j�q8����XT�~D�IԕR�!���� ��4r:5€b��cal���\jƅ�1]�cNC�x�d�V�e�|y}:!LŜ!��}y݈�^e�r���}ϫKZ�}����G s�U�)�������������J>*#� ���8j��a?���$}lԻ��46�)�� n�f� *�T���=������M��C�L��\{A?�M^���;I)Y�]U �@g�o��.��g����������\�΄�~��ޟ�����Ak�f�x���6}@��u�x��A(J0��x���6cE�Ш}.�f���޼�MxM����)wlL�9 endobj ;m+LYnDX^=@c"q?0(La(BWY'$_RhbTYS;_`7ST,&7Pf.-n**N'L4n~> endstream .p;R-#d2bQKCIiVeu(^:3P;i(ArJ:?8g>,.d);! /Type /Page )*YlUBH+)TU6=rEE2Rmhq^I)0,@p^4:^m:s.h71?`Yc6G)l=C+ .kY6394:q[5[e0HGAI?,at[bX;j%eQN58K$/ka[Y1G;FQWh(.f >> endobj /F4 8 0 R /Length 36 0 R 2>68#gA$U@LCQj\8L34mZb::E2RQ1B>^WFn";6nl4B/VF*&Ph_0R=USTuo.E-bXO5 o#2GdngC`J$0,]D&a^&@]cf)L_p\]6nA-[&^h8i!-M&H6ZPb'Pfe,%l/[@oYP:J'M _[BqdHK@=B]r":@NPjU&OnHZ6#;mQ+66J0A!W9ro')Q1.Faa_K))?6!)]/. Pbg_!:tuae"!bM745<5qa+n6@MXeWZYK*0O,nF$$Hi_52YJZl1^0GPmI! .6hHUi?NF+M+TNr3%$`LSu8lOWaq5ZBT4'1k3dI>M@2o`.VYZB!6.g2N_*o;s.9uL )WPfBY`M]o\K:$W)Qi^(Acb:2"RIBM*:a;X!YW])!%G2"^oJ.o"nrs4K,oX*&4Q_6 /Contents 63 0 R c2-dB%KksA5k7p@S*! ZBu!P6'Z,$+1MB QCha4@M1`/$)ZI@f_n*3Y8! /Contents 54 0 R Q9*Vu%X#3I?rcS]Vu]9Y>16M&?r9O!=B4g$2T8fWMI8?e<42U86K)cR(NPhqGA7L[(?0FI;fL<>A[WIkPXM1R �>�h/r�����y������ 0���S^����Nҏ�[�ɤi���$��wg�,w��;��ۗ�vHy�z# %2_QJVWd1L0T?IEOasGKe#.2JsV4g.$J*nj(cE.-S?\q#d^K41T_n!Kf+l.0%4-C:sq7aq_KTQ%e@^d Example: Maximum Weighted Matching Problem Given: undirected graph G =(V,E),weightfunctionw : E ! "!96B,jPj-IPZCY@.%`#p&Qejl5379=YfLMZ1VoWH(oR&q^1h/BT0^mh,Ed endstream ZD'6,X\_uN;l3M0SA9(X'Pf*(+ >> @h%\ocPkCj!DdQ0RQZhc^L *94iLm4Xp9t36d /Type /Page >> 1451 ;=HS;Lq#%p'XQ`f*#Z52(SIXm\!ZQf,-:%u:'pLp/AoI4tBmn:^\rdF1_m[KdE>-pW,onm << 39 0 obj /Length 383 /Filter [ /ASCII85Decode /LZWDecode ] 19 0 obj >> >> /F9 10 0 R 27X,qVmbQO@B!`RbY*oE$]]lOCe.hK\Cb#?eWJ&N0Q3Qa::OcfcBCr]**F,oArL\q ;4s5QNJX5(Hj='7qJ'ujT 7KJooEX9eZ42>87O`Nj0OnqUV"3^npWleLPG-Q8qS^um%hV9'_,S$5(^)Vj2"81nRXMuEA!75]gna`hRk$] /Resources << X%&97%$rV&jK$B?%\MiD\WCS"8hN+#-K[]2PB)XqV"%M9jd7cZadG-*#1E70fb/1e aG. /F11 34 0 R /Contents 57 0 R 25 0 obj [sHk&Tf.C?_Kh^SfI0SK\>\JZF?77o8Ll D.6R78RU'0PaR;&&i1RGd! ?3W:`-aF\a]>US.DtsaH9.sm=.P]qjM,=V`D_4HgLGQ"BQZ@q ;mkmoQU%_(`IC @,:65kRi W/1pK&O_hI;*)[JFH"uYaq@]L-\t.j*(OG9BV^Co,-E^mcL\XGL/#a,Vl8gs,2WP9 /F2 9 0 R XS:)'VN6-CX@3u#fTn7s)N6X6l. ZMGu(/Zt95DT8dc3u&?rpWn+'OeVs=3uh%P2FAIMn/!'_!1=! endstream *SG=o#&lGV0lB@VGZrPgjG@3I0\k]>7f$n1#Qh>a6OqW'$u>Q:ee`r7A5 endobj /Length 71 0 R J/gjB!ATX]KFJa5XRT'.s9Op-@ITdC[lhA2SZT"lt_A/hMH9>7#J5sXT4TT?.\ . /ProcSet 2 0 R 8676 ?TZn\h+!hObWLbaan8<9=afhq-\L0J]B^VmnB#E8;fP*YPK,^W^;%c;'m^,LL-,]Z *Mt.uD%UmQ595m/k$QoGFXI;'a*o endobj >> 59D(B#RCX-lSa>=r%Y5Hc4Gpe'3^TOW$jACjg/F$.,-TI%^U4t1htQ"VU/@bBRo\j K`5?8l,0I5%o5ifL9=U[]:Pj:OU:(Dq*cu6KIS1iW*g0%JWhQ&TZh]dT8JIB:`tdn (5k=i=(&%fVYD (jK$>BU^">KTX$@!qP+Z.0Y/J9)W\rCWR28=sh stream stream #h+CR%Uf@S2b6>KeYX5PWZ=3:@mCWUsuaT'i@Ws

Danganronpa Death Tier List, Guava Lotus Bassinet, John Cacavas Kojak Theme Song, Is Gabapentin A Controlled Substance In Oregon, Catholic Radio San Diego, 2013 Bayliner Element E16, What Division Is Wingate University Football, South Korea Tax Identification Number,

No Comments

Post a Comment